
Week 4 - Monday

 What did we talk about last time?
 Dynamic binding and static methods
 Final methods and classes
 Abstract methods and classes
 The instanceof keyword and getClass() methods
 UML class diagrams

 Let's say that a method could cause an error
 What should happen?

 In C, functions that cause errors return an error code, usually -1
 But that sucks!
 Everything has to return an int that could be an error code
 You have to check every single method return value to see if it's an error

 Wouldn't it be great if there was a general way to handle errors
whenever they come up?

 Instead of checking every method, Java has a general way of
handling errors (and other exceptional situations)

 The name for this system is exception handling
 When an error happens, code will throw an exception
 Throwing an exception usually means something went wrong

 A special block of code catches the exception
 When you catch an exception, you can
 Deal with the problem and move on
 Throw the same (or a new) exception and make someone else deal

with it

 The risky() method has a chance of destroying the world
 If the world is destroyed, execution will jump into the catch block

try {
System.out.println("About to do something risky!");
risky();
System.out.println("That was worth it!");

}
catch(WorldDestroyedException e) {
System.out.println("Whoops. We destroyed the world.");

}

 Dividing an integer by zero causes an ArithmeticException

try {
System.out.println("Let's divide by zero!");
int value = 3 / 0;
System.out.println("This line will never print!");

}
catch(ArithmeticException e) {
System.out.println("Don't divide by zero!");

}

 It might be more sensible to deal with the problem
boolean success = false;
while(!success) {
System.out.print("Enter a number: ");
int divisor = in.nextInt();
try {

int answer = 100 / divisor;
System.out.println("100 / " + divisor + " = " + answer);
success = true;

}
catch(ArithmeticException e) {

System.out.println("Don't divide by zero!");
}

}

 If a some code can cause many different exceptions, you can use multiple catches to handle them
 When a problem happens, execution will jump to the first catch that matches
try {

useNumber(100 / divisor);
getHoney();
stayUpAllNight();

}
catch(ArithmeticException e) {

System.out.println("We divided by zero!");
}
catch(BeeStingException e) {

if(allergic)
System.out.println("We're dying!");

else
System.out.println("Youch!");

}
catch(ExhaustedException e) {

System.out.println("*YAWN*");
}

 If an exception is thrown, the remaining code inside a try
won't be executed

 If an exception isn't thrown, none of the catch blocks will be
executed

 If you want code that is executed no matter what, it can be
put in a finally block after all the catch blocks

 finally blocks are often used to do clean-up so we're sure
it gets done
 Things like closing files or network connections

 Statements in a finally happen no matter what
 Even if some uncaught exception leaves the method
try {
acid.juggle();
System.out.println("I'm an amazing juggler!");

}
catch(FaceMeltException e) {
System.out.println("I melted my face!");

}
finally { // Happens no matter what
room.cleanUp();
lights.turnOff();

}

 The power of a finally block is surprising
 Even if you're about to return, code in the finally will be executed (and

can override whatever you're doing)
 Only killing the JVM will stop a finally
try {
if(random.nextInt() % 2 == 0)

return "Even";
else

return (7 / 0) + " trouble!";
}
catch(ArithmeticException e) {
return "Ruh-roh";

}
finally {
return "I win!"; // "I win!" will always return

}

 Exceptions in Java come in two categories
 Checked
 Unchecked

 You must deal with checked exceptions
 If a method could throw a checked exception, you have to run that

method inside of a try block with a catch that matches the
exception

 Or you can specify that your method also throws the exception
 Essentially, you have to deal with the problem or warn other

people that you can cause the same problem

 Most exceptions that come up frequently are checked exceptions:
 FileNotFoundException
 IOException

 Most exceptions you will design and throw will be checked
 Checked exceptions indicate that a problem has happened, but it

might be possible to recover from the problem
 For example, trying to open a file that doesn't exist could cause a
FileNotFoundException
 Recovering from this exception might involve asking the user to pick

another file name
 Checked exceptions inherit from the Exception class

 Unchecked exceptions don't require a try block
 If they did, almost everything would be in a try block

 They usually mean there's a bug in the code
 Common unchecked exceptions:
 ArithmeticException (division by zero)
 ArrayIndexOutOfBoundsException
 StringIndexOutOfBoundsException
 ClassCastException
 NullPointerException

 You don't have to catch these, but you can
 Unchecked exceptions inherit either from the Error class or the
RuntimeException class

 If a method doesn't want to catch a (checked) exception, it can be
marked as throwing that exception with the throws keyword

 This pet()method doesn't handle a GoatBiteException
and thus must use the throws keyword to warn other code that
it could throw a GoatBiteException

void pet(Goat goat) throws GoatBiteException {
goat.touch(); // can throw GoatBiteException

}

 A method can have an unlimited number of exceptions listed after
the throws keyword
 Separate them with commas

 Perhaps many bad things can happen in the method

void haveAdventures() throws LostLegException,
PetrificationException, AcidBurnException {
becomePirate(); // Might lose a leg
fightMedusa(); // Might turn to stone
killXenomorph(); // Might be burned by acid

}

 What's really powerful about exceptions is that they are a form of non-
local control

 Local control flow means changes to program execution that happen
within a method
 Making a choice with an if
 Repeating with a loop

 A return statement moves control back to the method that called the
current method

 Like a return, if an exception isn't caught, it will go back to the method
that called the current method…
 But if that method doesn't catch the exception, it will go back to the previous
 And so on…

 In many cases, we want to deal with the exception and keep going
 However, if no catch statement catches an exception, it keeps

unwinding methods back to the previous method and the one
before that…

 Ultimately, if the main()method doesn't catch the exception, it
will kill the program (or just the current thread if there's more than
one)

 The JVM will print out a message about the exception and a stack
trace of all the methods involved, all the way down to the method
that caused the exception
 Eclipse shows this message in red

 A NullPointerException is a very common unchecked
exception

 It happens whenever you try to access a method or a member
of a null reference

 It's fine if a reference is null, but if you use a dot (.) to try to
access something inside the null reference, your program
will likely crash

 It almost never makes sense to catch a
NullPointerException
 They just mean the program has a mistake

 Usually, we get a NullPointerException when we try to
call a method

 Sometimes people get confused when they make arrays
 When it's created, an array is full of null references

String text = null;
int length = text.length(); // NullPointerException

Wombat[] wombats = new Wombat[100]; // 100 nulls
// NullPointerException
System.out.println(wombat[0].toString());

 When trying to access an invalid index in an array, you'll get an
ArrayIndexOutOfBoundsException

 Strings have a similar
StringIndexOutOfBoundsExceptionwhen you try to
access indexes they don't have

int[] numbers = new int[50];
numbers[-2] = 5; // ArrayIndexOutOfBoundsException
numbers[50] = 21; // Also illegal: indexes from 0 to 49

String distance = "a mile long";
char c = distance.charAt(12); // Out of bounds!
String smaller = distance.substring(-4,7); // Negative?

 Defining your own exceptions
 Throwing exceptions

 Michael Thornton talk:
 How to get a Software Engineering Job
 Tuesday, February 4, 4-6 p.m.
 The Point 113

 Keep reading Chapter 12
 Keep working on Project 1
 Due Friday!

	COMP 2000
	Last time
	Questions?
	Project 1
	Exceptions
	Errors
	Exceptions
	Catching an exception
	Another example
	Yet another example
	Multiple catch statements
	A finally block
	finally example
	finally is out of control!
	Catch or specify
	Checked exceptions
	Unchecked exceptions
	The throws keyword
	Throwing more than one exception
	Non-local control
	What happens if an exception is never caught?
	NullPointerException
	NullPointerException examples
	IndexOutOfBoundsException
	Upcoming
	Next time…
	Reminders

