Week 4 - Monday

COMP 2000




= What did we talk about last time?

= Dynamic binding and static methods

= Final methods and classes

= Abstract methods and classes

= The instanceof keyword and getClass () methods
= UML class diagrams



Questions?




Project 1




Exceptions




= Let's say that a method could cause an error

= What should happen?
= In C, functions that cause errors return an error code, usually -1

= Butthat sucks!

= Everything has to return an int that could be an error code

= You have to check every single method return value to see if it's an error
= Wouldn't it be great if there was a general way to handle errors
whenever they come up?



= Instead of checking every method, Java has a general way of
handling errors (and other exceptional situations)

= The name for this system is exception handling

= When an error happens, code will throw an exception

= Throwing an exception usually means something went wrong
= A special block of code catches the exception
= When you catch an exception, you can

= Deal with the problem and move on

= Throw the same (or a new) exception and make someone else deal
with it



Catching an exception

The risky () method has a chance of destroying the world
If the world is destroyed, execution will jump into the catch block

try {
System.out.println ("About to do something risky!") ;
risky () ;
System.out.println("That was worth it!");

}

catch (WorldDestroyedException e) {
System.out.println ("Whoops. We destroyed the world.");

}




Another example

Dividing an integer by zero causes an Ari thmeticException

try {
System.out.println("Let's divide by zero!");

int value = 3 / 0;
System.out.println("This line will never print!");

}
catch (ArithmeticException e) {

System.out.println("Don't divide by zero!");

}




Yet another example

It might be more sensible to deal with the problem

boolean success = false;
while (!success) {
System.out.print ("Enter a number: ");
int divisor = in.nextInt() ;
try {
int answer = 100 / divisor;
System.out.println("100 / " + divisor + " = " + answer);
success = true;
}
catch (ArithmeticException e) {
System.out.println("Don't divide by zero!");
}

}




lultiple catch statements

If a some code can cause many different exceptions, you can use multiple catches to handle them
When a problem happens, execution will jump to the first catch that matches

try {
useNumber (100 / divisor) ;

getHoney () ;
stayUpAllNight () ;

}

catch (ArithmeticException e) {
System.out.println("We divided by zero!");

}
catch (BeeStingException e) ({
if (allergic)
System.out.println("We're dying!");
else
System.out.println("Youch!") ;
}

catch (ExhaustedException e) {
System.out.println ("*YAWN*") ;

}




= |f an exception is thrown, the remaining code inside a try

won't be executed
= |f an exception isn't thrown, none of the catch blocks will be

executed

= If you want code that is executed no matter w
putina finally block after all the catch b

= finally blocks are often used to do clean-u
it gets done

= Things like closing files or network connections

nat, it can be
ocks

D SO wWe're sure



finally example

Statementsina £inally happen no matter what
Even if some uncaught exception leaves the method

try {
acid. juggle() ;
System.out.println("I'm an amazing juggler!");

}

catch (FaceMeltException e) {
System.out.println("I melted my face!");

}

finally { // Happens no matter what
room.cleanUp() ;
lights.turnOff () ;

}




finally is out of control!

The power of a £inally block is surprising

Even if you're about to return, code in the £inally will be executed (and
can override whatever you're doing)

Only killing the JVM will stop a £inally

try {
if (random.nextInt() $ 2 == 0)
return "Ewven'";
else

return (7 / 0) + " trouble!";
}
catch (ArithmeticException e) ({
return "Ruh-roh'";
}

finally {
return "I win!"; // "I win!" will always return

}




Exceptions in Java come in two categories
= Checked

= Unchecked
You must deal with checked exceptions

If a method could throw a checked exception, you have to run that
method inside of a try block with a catch that matches the
exception

Or you can specify that your method also throws the exception
Essentially, you have to deal with the problem or warn other
people that you can cause the same problem




Most exceptions that come up frequently are checked exceptions:
* FileNotFoundException

= TOException

Most exceptions you will design and throw will be checked
Checked exceptions indicate that a problem has happened, but it
might be possible to recover from the problem

For example, trying to open a file that doesn't exist could cause a
FileNotFoundException

= Recovering from this exception might involve asking the user to pick

another file name
Checked exceptions inherit from the Exception class



Unchecked exceptions don't require a try block

= Ifthey did, almost everything would be in a try block
They usually mean there's a bug in the code
Common unchecked exceptions:

= ArithmeticException (division by zero)
ArrayIndexOutOfBoundsException
StringIndexOutOfBoundsException
ClassCastException

NullPointerException

You don't have to catch these, but you can

Unchecked exceptions inherit either from the Exrror class or the
RuntimeException class



= |f a method doesn't want to catch a (checked) exception, it can be
marked as throwing that exception with the throws keyword

void pet (Goat goat) throws GoatBiteException ({
goat.touch(); // can throw GoatBiteException

}

= Thispet () method doesn't handle a GoatBiteException
and thus must use the throws keyword to warn other code that
it could throw a GoatBiteException



= A method can have an unlimited number of exceptions listed after
the throws keyword

= Separate them with commas
= Perhaps many bad things can happen in the method

void haveAdventures () throws LostLegException,
PetrificationException, AcidBurnException {
becomePirate () ; // Might lose a leg
fightMedusa () ; // Might turn to stone
killXenomorph () ; // Might be burned by acid

}




What's really powerful about exceptions is that they are a form of non-
local control

Local control flow means changes to program execution that happen
within a method

= Making a choicewithanif
= Repeating with a loop

A return statement moves control back to the method that called the
current method

Like a return, if an exception isn't caught, it will go back to the method
that called the current method...

= Butif that method doesn't catch the exception, it will go back to the previous
= Andsoon...



In many cases, we want to deal with the exception and keep going
However, if no catch statement catches an exception, it keeps
unwinding methods back to the previous method and the one
before that...

Ultimately, if themain () method doesn't catch the exception, it
will kill the program (or just the current thread if there's more than
one)

The JVM will print out a message about the exception and a stack
trace of all the methods involved, all the way down to the method

that caused the exception
= Eclipse shows this message in red



* ANullPointerException isavery common unchecked
exception

= [t happens whenever you try to access a method or a member
of anull reference

= [t's fine if areferenceisnull, butif youuseadot(.)totryto
access something inside the null reference, your program
will likely crash

= [t almost never makes sense to catch a
NullPointerException

= They just mean the program has a mistake



= Usually, we getaNullPointerException when we try to
call a method

String text = null;
int length = text.length(); // NullPointerException

= Sometimes people get confused when they make arrays
= When it's created, an array is full of null references

Wombat[] wombats = new Wombat[100]; // 100 nulls
// NullPointerException
System.out.println (wombat[0] . toString()) ;




= When trying to access an invalid index in an array, you'll get an
ArrayIndexOutOfBoundsException

int[] numbers = new int[50];
numbers[-2] 5; // ArrayIndexOutOfBoundsException
numbers [50] 21; // Also illegal: indexes from 0 to 49

= Strings have a similar
StringIndexOutOfBoundsException when you try to
access indexes they don't have

String distance = "a mile long";
char ¢ = distance.charAt(12); // Out of bounds!
String smaller = distance.substring(-4,7); // Negative?




Upcoming




= Defining your own exceptions
= Throwing exceptions



= Michael Thornton talk:
= How to get a Software Engineering Job

= Tuesday, February 4, 4-6 p.m.

= The Point 113
= Keep reading Chapter 12
= Keep working on Projecta

= Due Friday!



	COMP 2000
	Last time
	Questions?
	Project 1
	Exceptions
	Errors
	Exceptions
	Catching an exception
	Another example
	Yet another example
	Multiple catch statements
	A finally block
	finally example
	finally is out of control!
	Catch or specify
	Checked exceptions
	Unchecked exceptions
	The throws keyword
	Throwing more than one exception
	Non-local control
	What happens if an exception is never caught?
	NullPointerException
	NullPointerException examples
	IndexOutOfBoundsException
	Upcoming
	Next time…
	Reminders

