
Week 4 - Monday



 What did we talk about last time?
 Dynamic binding and static methods
 Final methods and classes
 Abstract methods and classes
 The instanceof keyword and getClass() methods
 UML class diagrams









 Let's say that a method could cause an error
 What should happen?

 In C, functions that cause errors return an error code, usually  -1
 But that sucks!
 Everything has to return an int that could be an error code
 You have to check every single method return value to see if it's an error

 Wouldn't it be great if there was a general way to handle errors 
whenever they come up?



 Instead of checking every method, Java has a general way of 
handling errors (and other exceptional situations)

 The name for this system is exception handling
 When an error happens, code will throw an exception
 Throwing an exception usually means something went wrong

 A special block of code catches the exception
 When you catch an exception, you can
 Deal with the problem and move on
 Throw the same (or a new) exception and make someone else deal 

with it



 The risky() method has a chance of destroying the world
 If the world is destroyed, execution will jump into the catch block

try {
System.out.println("About to do something risky!");
risky();
System.out.println("That was worth it!");

}
catch(WorldDestroyedException e) {
System.out.println("Whoops. We destroyed the world.");

}



 Dividing an integer by zero causes an ArithmeticException

try {
System.out.println("Let's divide by zero!");
int value = 3 / 0;
System.out.println("This line will never print!");

}
catch(ArithmeticException e) {
System.out.println("Don't divide by zero!");

}



 It might be more sensible to deal with the problem
boolean success = false;
while(!success) {
System.out.print("Enter a number: ");
int divisor = in.nextInt();
try {

int answer = 100 / divisor;
System.out.println("100 / " + divisor + " = " + answer);
success = true;

}
catch(ArithmeticException e) {

System.out.println("Don't divide by zero!");
}

}



 If a some code can cause many different exceptions, you can use multiple catches to handle them
 When a problem happens, execution will jump to the first catch that matches
try {

useNumber(100 / divisor);
getHoney();
stayUpAllNight();

}
catch(ArithmeticException e) {

System.out.println("We divided by zero!");
}
catch(BeeStingException e) {

if(allergic)
System.out.println("We're dying!");

else
System.out.println("Youch!");

}
catch(ExhaustedException e) {

System.out.println("*YAWN*");
}



 If an exception is thrown, the remaining code inside a try
won't be executed

 If an exception isn't thrown, none of the catch blocks will be 
executed

 If you want code that is executed no matter what, it can be 
put in a finally block after all the catch blocks

 finally blocks are often used to do clean-up so we're sure 
it gets done
 Things like closing files or network connections



 Statements in a finally happen no matter what
 Even if some uncaught exception leaves the method
try {
acid.juggle();
System.out.println("I'm an amazing juggler!");

}
catch(FaceMeltException e) {
System.out.println("I melted my face!");

}
finally { // Happens no matter what
room.cleanUp();
lights.turnOff();

}



 The power of a finally block is surprising
 Even if you're about to return, code in the finally will be executed (and 

can override whatever you're doing)
 Only killing the JVM will stop a finally
try {
if(random.nextInt() % 2 == 0)

return "Even";
else

return (7 / 0) + " trouble!";
}
catch(ArithmeticException e) {
return "Ruh-roh";

}
finally {
return "I win!"; // "I win!" will always return

}



 Exceptions in Java come in two categories
 Checked
 Unchecked

 You must deal with checked exceptions
 If a method could throw a checked exception, you have to run that 

method inside of a try block with a catch that matches the 
exception

 Or you can specify that your method also throws the exception
 Essentially, you have to deal with the problem or warn other 

people that you can cause the same problem



 Most exceptions that come up frequently are checked exceptions:
 FileNotFoundException
 IOException

 Most exceptions you will design and throw will be checked
 Checked exceptions indicate that a problem has happened, but it 

might be possible to recover from the problem
 For example, trying to open a file that doesn't exist could cause a 
FileNotFoundException
 Recovering from this exception might involve asking the user to pick 

another file name
 Checked exceptions inherit from the Exception class



 Unchecked exceptions don't require a try block
 If they did, almost everything would be in a try block

 They usually mean there's a bug in the code
 Common unchecked exceptions:
 ArithmeticException (division by zero)
 ArrayIndexOutOfBoundsException
 StringIndexOutOfBoundsException
 ClassCastException
 NullPointerException

 You don't have to catch these, but you can
 Unchecked exceptions inherit either from the Error class or the 
RuntimeException class



 If a method doesn't want to catch a (checked) exception, it can be 
marked as throwing that exception with the throws keyword

 This pet()method doesn't handle a GoatBiteException
and thus must use the throws keyword to warn other code that 
it could throw a GoatBiteException

void pet(Goat goat) throws GoatBiteException {
goat.touch(); // can throw GoatBiteException

}



 A method can have an unlimited number of exceptions listed after 
the throws keyword
 Separate them with commas

 Perhaps many bad things can happen in the method

void haveAdventures() throws LostLegException, 
PetrificationException, AcidBurnException {
becomePirate(); // Might lose a leg
fightMedusa(); // Might turn to stone
killXenomorph(); // Might be burned by acid

}



 What's really powerful about exceptions is that they are a form of non-
local control

 Local control flow means changes to program execution that happen 
within a method
 Making a choice with an if
 Repeating with a loop

 A return statement moves control back to the method that called the 
current method

 Like a return, if an exception isn't caught, it will go back to the method 
that called the current method…
 But if that method doesn't catch the exception, it will go back to the previous
 And so on…



 In many cases, we want to deal with the exception and keep going
 However, if no catch statement catches an exception, it keeps 

unwinding methods back to the previous method and the one 
before that…

 Ultimately, if the main()method doesn't catch the exception, it 
will kill the program (or just the current thread if there's more than 
one)

 The JVM will print out a message about the exception and a stack 
trace of all the methods involved, all the way down to the method 
that caused the exception
 Eclipse shows this message in red



 A NullPointerException is a very common unchecked 
exception

 It happens whenever you try to access a method or a member 
of a null reference

 It's fine if a reference is null, but if you use a dot (.) to try to 
access something inside the null reference, your program 
will likely crash

 It almost never makes sense to catch a 
NullPointerException
 They just mean the program has a mistake



 Usually, we get a NullPointerException when we try to 
call a method

 Sometimes people get confused when they make arrays
 When it's created, an array is full of null references

String text = null;
int length = text.length();  // NullPointerException

Wombat[] wombats = new Wombat[100]; // 100 nulls
// NullPointerException
System.out.println(wombat[0].toString());



 When trying to access an invalid index in an array, you'll get an 
ArrayIndexOutOfBoundsException

 Strings have a similar 
StringIndexOutOfBoundsExceptionwhen you try to 
access indexes they don't have

int[] numbers = new int[50];
numbers[-2] = 5;  // ArrayIndexOutOfBoundsException
numbers[50] = 21; // Also illegal: indexes from 0 to 49

String distance = "a mile long";
char c = distance.charAt(12);  // Out of bounds!
String smaller = distance.substring(-4,7);  // Negative?





 Defining your own exceptions
 Throwing exceptions



 Michael Thornton talk:
 How to get a Software Engineering Job
 Tuesday, February 4, 4-6 p.m.
 The Point 113

 Keep reading Chapter 12
 Keep working on Project 1
 Due Friday!


	COMP 2000
	Last time
	Questions?
	Project 1
	Exceptions
	Errors
	Exceptions
	Catching an exception
	Another example
	Yet another example
	Multiple catch statements
	A finally block
	finally example
	finally is out of control!
	Catch or specify
	Checked exceptions
	Unchecked exceptions
	The throws keyword
	Throwing more than one exception
	Non-local control
	What happens if an exception is never caught?
	NullPointerException
	NullPointerException examples
	IndexOutOfBoundsException
	Upcoming
	Next time…
	Reminders

